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Abstract

Given a geometry defined by the action of a Lie-group on a flat manifold, the Fels–Olver moving
frame method yields a complete set of invariants, invariant differential operators, and the differential
relations, or syzygies, they satisfy. We give a method that determines, from minimal data, the dif-
ferential equations the frame must satisfy, in terms of the curvature and evolution invariants that are
associated to curves in the given geometry. The syzygy between the curvature and evolution invari-
ants is obtained as a zero curvature relation in the relevant Lie-algebra. An invariant motion of the
curve is uniquely associated with a constraint specifying the evolution invariants as a function of the
curvature invariants. The zero curvature relation and this constraint together determine the evolution
of curvature invariants.

Invariantizing the formal symmetry condition for curve evolutions yield a syzygy between different
evolution invariants. We prove that the condition for two curvature evolutions to commute appears
as a differential consequence of this syzygy. This implies that integrability of the curvature evolution
lifts to integrability of the curve evolution, whenever the kernel of a particular differential operator is
empty. We exhibit various examples to illustrate the theorem; the calculations involved in verifying
the result are substantial.
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1. Introduction

Much has been written about the connection between geometry and integrability. In-
deed, many integrable equations have been shown to describe the evolution of curvature
invariants associated to a certain movement of curves in a particular geometric setting
[2,6,11,17,20,24]. Some of the literature might give the impression that integrability arises
from intrinsic properties of the underlying geometry. As was pointed out clearly in[20] this
is not the case. However, it is easier to detect the integrability of the curvature evolution
than that of the curve evolution, cf.[3].

Therefore the question arises whether integrability of the curvature evolution can be
lifted to imply the integrability of the motion of the curve[12]. Hasimoto[6] showed that
the invariant functionψ = κ exp(i

∫
τ), whereκ andτ are the curvature and torsion of a

curveγ in Euclidean three space, evolves according to the integrable nonlinear Schrödinger
equation

ψt = i

(
ψxx + 1

2
ψ|ψ|2

)
, (1)

provided that the curveγ evolves according to the vortex filament equation

γt = κe3, (2)

which relates the velocity of the curve to the bi-normal vector of the Serret–Frenet frame.
Subsequently, Langer and Perline[12] translated the hierarchy of generalized symmetries
of (1) to a hierarchy of commuting geometric curves, thereby establishing the integrability
of Eq.(2) itself. Thus it seems that assigning to a curve its curvature functions gives rise to
pairs of equivalent integrable equations[13].

In recent papers the lifting of integrability has been assumed. For example, in[2] it is
remarked, “in view of the equivalence between the integrable equations for the curvature
and the invariant motion, the motion law should also be integrable”. Again, in[18] we find,
“geometric evolutions would also be integrable in the sense that their associated curvature
evolutions are, given that these determine the curve up to the action of the group”. Moreover,
in [10] it is stated, “We’ll say such a flow is integrable if it induces a completely integrable
system of PDE for curvature and torsion”. However, such statements need justification, and
more precision as to what aspects of integrability are meant. We will take the existence
of symmetries to be the signature of integrability and we will demonstrate the lifting of
integrability in this precise way.

The method of moving frames provides a powerful tool to study geometric properties,
i.e., properties invariant under the action of a transformation group. This technique was
introduced by Darboux, who studied curves and surfaces in Euclidean geometry, and was
greatly developed by Cartan who used it in the context of generalizing Klein’s Erlangen
program. The formulation of the method by Fels and Olver[4,5] placed Cartan’s construc-
tions on a firm algebraic foundation. Their approach lead to new applications that would
not have been envisioned by Cartan, such as to computer vision and numerical schemes that
maintain symmetry[22].

The Fels–Olver moving frame method provides a generating set of invariants together
with a maximal set of invariant differential operators and the differential relations, orsyzy-
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gies they satisfy. These data are all obtained with respect to a specific frame, which depends
on a choice of submanifold which is transverse to the group orbits. One advantage of the
method is its accessibility. In Section2, we describe the ideas in the simplest possible lan-
guage, the main tool being the chain rule of multi-variable calculus. More importantly, the
method describes algorithmically what to do in any particular application and the calcula-
tions we require can be performed in a rigorous and straightforward way using symbolic
software packages[1,16].

The purpose of this paper is twofold. Firstly, in Section3, we present a method that
provides the evolution equation for the curvature invariants of a curve, moving in a geometry
which is given by the local action of a Lie-group on a manifold. The equation for the
curvature invariants of a curve derives from a syzygy between sets of invariants. This is a
zero-curvature condition in the relevant Lie-algebra and can be written in the form

κt = HIt, (3)

whereH is a (matrix) differential operator,κ are thecurvature invariants andIt are the
generatingevolution invariants (see Section2.3). Our contribution is to provide, from min-
imal data, the differential equations the frame satisfies using methods suitable for symbolic
computation. These are obtained without solving for the moving frame, which, in general,
is the central computational problem. The main result in Section3, Theorem 8, is thus of
independent interest.

The actual curvature evolution equation is obtained from relation (3) by specifying a
constraint

It = F [κ],

whereF is a (vector) function of the curvature invariant and their derivatives. This constraint
is an invariant description of the evolution of the curve. Thus, one does not have to know
the curvature invariants explicitly to obtain their evolution. However, there is a price to
pay. From our point of view the filament equation is rather symbolic when one neither
knows the curvature functionκ, nor knows how to calculate the frameρ = (e1, e2, e3).
Within our approach there are two cases where an explicit form for the curve evolution may
be obtained. Either one is able to solve the normalization equations (Section2.2) for the
frame, or one can use the Fels–Olver–Thomas replacement theorem (Section2.3) to obtain
the invariants in terms of classically known invariants of the group action. In either case the
explicit expression for the curvature invariants provides the Miura transformation from the
curve evolution to the curvature evolution.

The constraint might lead to an integrable equation for the curvatures. In Section4, we
answer the question whether integrability can be lifted:Suppose that a curvature evolution
is integrable, what can one say about the motion of the curve? This is the second purpose
of the paper. As we take the existence of infinitely many commuting symmetries to be
the signature of integrability, our approach is to compare the symmetry conditions of both
evolutions. The invariant form of the symmetry condition

Dt1ut2 −Dt2ut1 = 0
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becomes a relation between the evolution invariants

C(It1, It2) = Dt1It2 +Mt1t2 −Dt2It1 −Mt2t1 = 0, (4)

with correction terms M (see Section2.3). For two invariant curve evolutions, specified by

Iti = Fi[κ], i = 1,2, (5)

the relation(4)gives a condition on the functionsFi, which is called the symmetry condition
and is denoted as

C(It1, It2)|Iti=Fi = 0. (6)

We show that the symmetry condition for curvature evolutionsκti = HFi, i = 1,2 appears
as a differential consequence of(6), that is

Dt1κt2 −Dt2κt1 − [Dt1,Dt2]κ = HC,

evaluated at the constraints(5). This implies that integrability does not necessarily lift from
the curvature evolution to the curve evolution. However, most commonly studied integrable
curvature equations are homogeneous polynomials or rational functions of the differential
invariants. Since in these classes the kernel of the differential operatorH is empty, pairs of
integrable equations result, cf.[13]. In order to illustrate the scope of the theorem and the
power of the method, we include, for several geometries, the explicit calculations that one
would need to perform in the absence of the general result.

2. Moving frames à la Fels and Olver

In this section, we briefly describe the Fels and Olver moving frame formulation[4,5],
in the language of undergraduate calculus. We give those details necessary to understand
the proof of the main theorem of the next section, Theorem 8. We provide two expository
examples which will be used in the sequel.

2.1. Group actions and prolongation

We are concerned withq functionsuα that depend onp variablesxi. New functions are
obtained by differentiation and these will be denoted using a multi-index notation, e.g.

u2
112 = ∂3

∂x2
1∂x2

u2.

We consider all functions as independent and let them be the co-ordinates of a spaceM.
Points inM will be denoted byz = (x1, . . . , xp, u

1, . . . , uq, u1
1, . . .). In other words,M is

the jet bundle of the (p+ q)-dimensional fibered manifoldX× U whereX is the space of
independent variables andU is the space of dependent variables.
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We will denote byA the ring of smooth functions onM, that depend on finitely many
arguments. To indicate functional dependence off ∈ A we simply writef (z). The action
of ∂

∂xi
extends to an action onA by the total differentiation operator

Di = ∂

∂xi
+

q∑
α=1

∑
K

uαKi
∂

∂uαK
. (7)

We assume we are given a smooth left action of anr-dimensional Lie groupG on the
manifoldX× U. By prolongation we will get a left action onM, which is calculated using
the chain rule of differentiation. The action∗ : G×M → M satisfiesgh ∗ z = g ∗ h ∗ z.
A right action onA is then given by• : G×A→ A; g • f (z) = f (g ∗ z).

The image of a point under the action is denoted variously as

g ∗ z = z̃ = F (z, g)

or in terms of the co-ordinate functions as

g • xj = x̃j = Fj(z, g), g • uαK = ũαK = FαK(z, g)

The different notations are used to ease the exposition, depending on the context. The
property of∗ being a left action (or• being a right action acting component-wise on vector
valued functions) is equivalent toF (g ∗ z, h) = F (z, hg).

The prolonged action is given explicitly by

g • uαi...j = D̃i . . . D̃jF
α(z, g), (8)

where

D̃i =
p∑
k=1

(D̃x)ikDk (9)

and the coefficients are obtained from the Jacobian matrix (D̃x)ik = (Dix̃k)−1.
The group elementsg ∈ Gwill be given in co-ordinatesg = (g1, . . . , gr). With the group

action comes an action of its Lie-algebra, obtained by formally expanding the group around
its identity e∈ G. Let g(ε) ⊂ G be any one parameter subgroup ofG such thatg(0) = e.
Using the chain rule and Taylor’s formula we obtain

z̃ = z+ ε

r∑
i=1

∂z̃

∂gi(ε)

∣∣∣∣
g(ε)=e

dgi(ε)

dε

∣∣∣∣
ε=0

+O(ε2).

wheregi(ε) are the co-ordinates ofg(ε). Thus the infinitesimal generator of any one param-
eter subgroup is a linear combination of ‘basic’ infinitesimal generators. Their components
are called theinfinitesimals of the group action with respect to thei-th group parameter. A
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commonly used notation is

ξj,i(z) = ∂x̃j

∂gi

∣∣∣∣
g=e

, φα,i(z) = ∂ũα

∂gi

∣∣∣∣
g=e

(10)

They classically depend only on (x, u). By iterative use of the chain rule, we may obtain
recursion formula for the prolonged infinitesimals

φαK,i(z) = ∂z̃αK

∂gi

∣∣∣∣∣
g=e

(11)

in terms of theξj,i andφα,i. The recursion formula and its derivation can be found in textbooks
on symmetries of differential equations cf. [[21], Theorem 2.36]. Further, they have been
implemented in virtually every computer algebra system as part of Lie’s algorithm to find
symmetries of differential equations. A review of the software packages available has been
given by W. Hereman in[9], (Vol. III, Chapter 13).

In the examples we will give names to every component ofx andu. We also use the names
of the components in the (multi)index instead of their numbers. For example in Example 1
we takep = q = 2. The components ofx andu will be x1 = x, x2 = t, u1 = u andu2 = v.
And instead ofu2

112 we writevxxt .

Example 1. The Euclidean groupE(2) = SO(2)�R2 acts on the variables (x, t, u, v) with
g = (α, a, b) as

(
ũ

ṽ

)
=
(

cosα − sin α

sin α cosα

)(
u

v

)
+
(
a

b

)
.

leavingx andt invariant. Therefore we also havẽDx = Dx, D̃t = Dt and hence the pro-
longed action is simply given by

g •
(
uK

vK

)
=
(

cosα − sin α

sin α cosα

)(
uK

vK

)

The nonzero infinitesimals of the Euclidean group are

φuK,α(z) = −vK, φvK,α(z) = uK, φu,a(z) = 1, φv,b(z) = 1.

Example 2. The second example is the groupSL(2) acting on the variables (x, t, u(x, t))
ast̃ = t and(

x̃

ũ

)
=
(
a b

c (1 + bc)/a

)(
x

u

)
(12)



1300 E.L. Mansfield, P.H. van der Kamp / Journal of Geometry and Physics 56 (2006) 1294–1325

where (a, b, c) are the co-ordinates ofg ∈ SL(2) near the identity e= (1,0,0). Formula
(9) yields the following differential operators

D̃x = 1

a+ bux
Dx, D̃t = Dt − but

a+ bux
Dx

From Eq.(8) it now follows that

ũx = ac + ux(1 + bc)

a(a+ bux)
, ũxx = uxx

(a+ bux)3
, ũt = ut

a+ bux

It can be checked that this is a right action. A table of infinitesimals is given below.

x u ux uxx uxxx

a x −u −2ux −3uxx −4uxxx
b u 0 −u2

x −3uxuxx −4uxuxxx − 3u2
xx

c 0 x 1 0 0

The entry in the (i, y) place is the infinitesimal action corresponding to thei-th group
parameter on the componenty of z.

2.2. Constructing a moving frame

We use the Fels–Olver definition of a moving frame, and their approach to constructing
them. This does not depend in any way on the presence of a frame bundle.

Definition 1. A left moving frame is a leftG-equivariant map,

ρ : M → G, ρ(g ∗ z) = gρ(z),

and aright moving frame is a rightG-equivariant map,

ρ : M → G, ρ(g ∗ z) = ρ(z)g−1.

A moving frame will exist if and only if the group action is free and regular. In our case the
(sufficiently high) prolongation of the group action onM will be locally free provided the
action onX× U is locally effective. We refer to[5] for the technical details.

The construction of a local moving frame in a neighborhoodU proceeds as follows. Let
K ⊂ U be a sub-manifold which is transverse to the group orbits. We takeU to be small
enough so that each orbit intersectsK at most once, cf.Fig. 1. Usually the cross-sectionK is
the locus of a set of equationsψk(z) = 0, k = 1, . . . , r, and then the so-callednormalization
equations for the frame areψk(z̃) = 0, k = 1, . . . , r. Solving these equations for the group
parameters in terms ofz yields a right frame.

Geometrically, the construction is as follows. Forz ∈ U, takek ∈ K andh ∈ G such that
k = h ∗ z. Theright moving frameρ : U→ G is then defined byρ(z) = h, and theleft frame
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Fig. 1. Construction of a right moving frame using a cross-section.

byρ(z) = h−1. The right frameρ is right equivariant sinceρ(g ∗ z) = hg−1 = ρ(z)g−1 and
a similar remark holds for the left frame, which is left equivariant.

One can think of the Fels–Olver moving frame as providing, locally, a trivialization of
the manifold, i.e., when the frame is a right frame

ϕ : U→ G×K, z → (ρ(z), ρ(z) ∗ z)

is a trivialization ofU.
In the expository examples one can solve the normalization equations for the group pa-

rameters. In general, this will not be possible. However, to obtain the evolution of curvature
invariants we donot need the frame to be known explicitly. This will be made clear in
Section3.

Example 1 (cont.). As normalization equations for the Euclidean group we choose

ũ = 0, ṽ = 0, ṽx = 0. (13)

These equations yield a right moving frame, mappingz ∈ M to ρ(z) ∈ G which has group
parameters

ρ(z) =
(

− arctan

(
vx

ux

)
,−uux + vvx√

u2
x + v2

x

,
uvx − vux√
u2
x + v2

x

)
.

A left moving frame is then given by the inverseρ−1(z) which has parameters(
arctan

(
vx

ux

)
, u, v

)
. (14)
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Fig. 2. An orthonormal frame attached to a curve in the plane.

Considering the rotational part of the group we note that atg = ρ(z) the rows of(
cos (α) − sin (α)

sin (α) cos (α)

)
= 1√

u2
x + v2

x

(
ux vx

−vx ux

)
(15)

are the orthonormal vectorse1 ande2 attached to the curveγ = (u, v) drawn inFig. 2.

Note that we could also have started by defining the action ofG onM to be the ‘inverse’
action(

ũ

ṽ

)
=
(

cosα sin α

− sinα cosα

)(
u− a

v− b

)
.

The normalization equations(13)would then have yielded the moving frame(14)as aright
moving frame.

Example 2 (cont.). For the matrix action ofSL(2) on (x, u), we can take the normalization
equations

x̃ = 0, ũ = 1, ũx = 0. (16)

Theright frame is then given by

ρ(z) =
(
u,−x, ux

xux − u

)
. (17)

2.3. Invariants and syzygies

In the sequel we assume thatρ(z) is a right moving frame. Thenormalized differential
invariants Ji, Iα, IαK are defined by evaluating the transformed dynamical variables on the
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frame. They are the components of

I(z) = ρ(z) ∗ z.

Since

g • (ρ(z) ∗ z) = ρ(g ∗ z) ∗ (g ∗ z) = ρ(z)g−1 ∗ (g ∗ z) = ρ(z)g−1g ∗ z = ρ(z) ∗ z,

the functionI(z) is an invariant. The specific components ofI(z) are denoted

Ji = x̃i|g=ρ(z) , IαK = ũαK

∣∣∣
g=ρ(z)

.

We can deal with these objects abstractly. However, explicit expressions for them in terms
of the original variables can often be obtained. When the frame is known explicitly this is
done by direct computation. The next theorem shows how the frame dependent invariants
defined above may be related to known invariants, a procedure that will be illustrated in
Example 4 of Section4.

An important result is that any differential invariant is a function of the above invariants.
This is a consequence of theFels–Olver–Thomas replacement theorem ([5], Theorem 10.3),
which states:

Theorem 2. If f (z) ∈ A is an ordinary differential invariant then

f (z) = f (I(z)).

This is true since in particular the action ofg = ρ(z) ∈ G leavesf (z) invariant. As a corollary
the set{Ji, Iα, IαK} is a complete set of invariants.

The set of co-ordinates functions{uαK} can be obtained by acting with differentiation oper-
ators on the ‘fundamental’ set of dependent variables{uα}. Similarly the above complete
set of invariants can be obtained by acting with invariant differential operators on a (finite)
fundamental set of invariants.

Definition 3. A maximal set ofinvariant operators is defined by evaluating the transformed
total differential operators on the frame. They are

Dj = D̃j

∣∣∣
g=ρ(z)

,

interpreted as derivations onA.

One should be careful with the order of differentiation and substitution. In general we have
that

DjI
α
K = D̃j

∣∣∣
g=ρ(z)

ũαK

∣∣∣
g=ρ(z)

�= D̃jũ
α
K

∣∣∣
g=ρ(z)

= ũαKj

∣∣∣
g=ρ(z)

= IαKj.
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This motivates the following definition.

Definition 4. Thecorrection terms Nij andMα
K are defined by

DjJi = δij +Nij, DjI
α
K = IαKj +Mα

Kj, (18)

whereδij is the Kronecker delta.

It follows from their definition that the invariants are left unchanged by permutations
within their index. The correction terms, however, arenot invariant under permutations in
their index.

Proposition 5. ([5], Equation (13.8))There exists an p× r correction matrix K such that

Nki =
r∑
j=1

Kijξk,j(I(z)), Mα
Ki =

r∑
j=1

Kijφ
α
K,j(I(z)) (19)

where j is the index for the group parameters and r = dim(G).

This result can be proved by application of the chain rule toD̃iI(z) evaluated atg = ρ(z).
It then follows thatK is given by

Kij = D̃iρj(z̃)
∣∣∣
g=ρ(z)

Its rows will take on additional significance in Section3.
The matrixK can be calculated without explicit knowledge of the frame. All that is

required are the normalization equations and the infinitesimal group action. Suppose the
variables actually occurring in theψλ(z) are

ζi =
{
xki , 1 ≤ i ≤ m,

u
αi
Ki
, m < i ≤ n.

DefineT to be the invariantp× n total derivative matrix

Tij =
{
δkji, 1 ≤ j ≤ m,

I
αj

Kji
, m < j ≤ n.

Also, letΦ denote ther × n matrix of invariant generators

Φij =
{
ξkj,i(I), 1 ≤ j ≤ m,

φ
αj

Kj,i
(I), m < j ≤ n.
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Furthermore, defineJ to be the invariantn× r transpose of the Jacobian matrix ofψ, that
is

Jij =


∂ψj(I)
∂Jki

, 1 ≤ i ≤ m,

∂ψj(I)

∂I
αi

Ki

, m < i ≤ n.

Using the above defined matrices, which are easily calculated, the correction matrix can be
obtained as follows.

Theorem 6. (Olver, [23]) The correction matrix K, which provides the error terms in the
process of invariant differentiation in Proposition5, is given by

K = −TJ(ΦJ)−1.

Proof. We compute the invariantization of the equations

Diψλ(ρ(z) ∗ ζ) = 0. (20)

The invariantized normalization equations are functions of both the variablesζl and the
co-ordinates of the frameρj(z). Since the latter depend on the first we have to be careful.
We separate the different dependencies by writingψp(ρ(z) ∗ ζ) = Ψp(ζ, ρ(z)). Here theψ’s
are functions ofn variables, whereas theΨ ’s depend onn+ r variables. Thus from Eq.(20)
we obtain

r∑
j=1

Diρj(z)
∂Ψλ(ζ, ρ(z))

∂ρj(z)
+

n∑
l=1

Diζl
∂Ψλ(ζ, ρ(z))

∂ζl
= 0.

We use the chain rule once more and write

∂Ψλ(ζ, ρ(z))

∂ρj(z)
=

n∑
l=1

∂ρ(z) ∗ ζl
∂ρj(z)

∂ψλ(ρ(z) ∗ ζ)
∂ρ(z) ∗ ζl .

The theorem is proved by invariantization of the different terms, that is, replacez by z̃ (ζ
by ζ̃) and evaluate atg = ρ(z). �

In a computer algebra environment, invariantization is achieved by substitution of the
normalized invariants and simplification with respect to the normalization equations. For a
discussion of the subtle issues that arise in this context we refer to[15]. In the meantime,
we suppose that the simplification can be done by substitution of certain invariants that are
highest with respect to a specified ordering. The set of suchhighest normalized invariants
will be denoted byH. Note thatH is a subset of{ρ • ζi, i = 1, . . . , n}.

A classical theorem due to Tresse[25] states that all differential invariants can be obtained
as functions of a finite number of invariants and their invariant derivatives. We have the
following theorem.
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Theorem 7. ([5], Theorem 13.4)The set given by

{Ji, Iα, IαKj|IαK ∈ H} −H (21)

is a generating set of differential invariants.

This set is not necessary minimal, as will be shown in the examples. A major difference
between the set{Di, xj, uα} and the set of invariant differential operators with the generating
invariants is the existence of nontrivialsyzygies. Let IαJ , I

α
L be two (generating) differential

invariants, and indexesK, M are such thatIαJK = IαLM . Then

DKI
α
J −DMIαL = Mα

JK −Mα
LM (22)

is a(fundamental) syzygy, [5].

Example 1 (cont.). Since we have calculated a frame explicitly, the invariants can easily be
expressed in terms of original variables. The components ofρ(z) ∗ z are the normalization
equations

Iu = ρ(z) • u = 0, Iv = ρ(z) • v = 0, Ivx = ρ(z) • vx = 0,

and the invariant functions

Iux =
√
u2
x + v2

x, IuK = uxuK + vxvK√
u2
x + v2

x

, IvK = uxvK − vxuK√
u2
x + v2

x

.

The invariant operators are simplyDx = Dx andDt = Dt . Let us calculate theK matrix.
We have

T =
(
Iux 0 Iuxx I

v
xx

Iut I
v
t I

u
xt I

v
xt

)
, Φ =

0 0 Iux
1 0 0

0 1 0

 , J =

1 0 0

0 1 0

0 0 1

 ,
and hence

K = −
(
Ivxx/I

u
x I

u
x 0

Ivxt/I
u
x I

u
t I

v
t

)
. (23)

The correction terms are, forα ∈ {u, v}, i ∈ {x, t},

Mα
i = −Iαi , Mu

Ki = IvxiI
v
K

Iux
, Mv

Ki = −I
v
xiI

u
K

Iux
.
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The generating set of differential invariants is{Ix, It, Iut , Iux , Ivt , Ivxx, Ivxt} and we have the
following fundamental syzygies.

DtIux −DxIut = − IvxxI
v
t

Iux
,

Ivxt −DxIvt = IvxxI
u
t

Iux
,

DtIvxx −DxIvxt = IvxxI
u
xt−IvxtIuxx
Iux

.

(24)

It is seen that the generating set is not minimal since the invariantIvxt may be removed using
the second syzygy. For later reference, we note that the system may be written in the form
(3), with µ = Iuxx, ν = Iux ,(

µ

ν

)
t

=
(
Dx

µ
ν

+ µ
ν
Dx + µνx

ν2 D
2
x − νx

ν
Dx − µ2

ν2

Dx −µ
ν

)(
Iut

Ivt

)
(25)

On the left hand side we have used subscriptt to denote invariant time-differentiation and
similarly on the right hand sideνx denotesDxν (which in this example is equal toDxν).

Example 2 (cont.). Since we have only one dependent variable we will omit the upper
index. Using the constructed moving frame we obtain the invariants

Ixx = uxx

(u− xux)3
, Ixxx = uuxxx − xuxuxxx + 3xu2

xx

(u− xux)5
, It = ut

u− xux
.

The invariant operators are found by substituting the frame into the transformed differentials
(9). They are

Dx = 1

u− xux
Dx, Dt = Dt + xut

u− xux
Dx. (26)

Using the matrices

T =
(

1 0 Ixx

0 Iut Ixt

)
, Φ =

0 −1 0

1 0 0

0 0 1

 , J =

1 0 0

0 1 0

0 0 1

 ,
we calculate theK matrix

K =
(

0 −1 −Ixx
It 0 −Ixt

)
.

The generating set of invariants is{Jt, It, Ixt, Ixx}. Using the correction terms

Mtx = 0, Mxxt = −3ItIxx, Mxtx = ItIxx,
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we find the syzygies

Ixt −DxIt = 0,

DtIxx −DxIxt = −4ItIxx.
(27)

By eliminatingIxt we get

D2Ixx = (D2
x − 4Ixx)It,

which is an equation in the form(3).

3. Evolutions in the Lie-algebra

In Section2we have shown, using the Fels–Olver moving frame method, that the syzygies
between the invariants can be obtained without solving for the frame. With regard to curves
there are certain invariant functions that play a special role, the curvature invariants. In this
section, we show how these can be obtained from the infinitesimals and theK matrix only.
Subsequently the evolution of the curvature invariants is easily understood in terms of an
evolution in the Lie-algebra ofG.

Any sufficiently smooth curve onX× U will prolong to a curve inM. Suppose the curve
is s �→ z(s), and this lies inU where a moving frame is defined. Then the frame provides a
curve inG, s �→ G, given bys �→ ρ(z(s)), seeFig. 3.

Consider the 1+ 1-dimensional case (x, t) �→ z(x, t) where the two independent vari-
ablesx andt are invariant and the operatorsDx andDt are thus invariant and commutative.
When the groupG is given as a matrix group, then the maps

x �→ Qx = (Dxρ(z))ρ(z)−1, t �→ Qt = (Dtρ(z))ρ(z)−1

are curves in the Lie-algebrag of G, whose entries are invariants of the group action. The
matrixQx is called thecurvature matrix and its entries thecurvature invariants. Viewing t
to be ‘time’, the entries inQt will be calledevolution invariants.

Fig. 3. A right moving frame for a curve parametrized bys.
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We will show how to calculate these special invariants without knowing the moving
frameρ(z) explicitly. The evolution of the curvature invariants is governed by a so called
zero-curvature equation[7],

[Dt −Qt , Dx −Qx] = 0. (28)

Here, the meaning of curvature in this phrase is not connected to that of the curve, but refers
to the fact that the manifold is flat. In this section we treat a more general setting where the
invariant operators do not necessarily commute. Thus the group may act non-trivially on
the independent variables.

An n-dimensional matrix representationR of a groupG is a mapG → GL(Rn) such that
R(g)R(h) = R(gh). Note that this implies thatR(e) is the identity matrix andR(g−1) =
R(g)−1. By differentiating with respect to the group co-ordinatesg1, . . . gr at the identity
e, we obtain the infinitesimal generators

ai = dR(g)

dgi

∣∣∣∣
g=e

, i = 1, . . . r

which span the Lie-algebrag of G.
Let � denote the matrix� = R(ρ(z)). We define thecurvature matrices

Qi = (Di�)�−1, i = 1, . . . , p (29)

The next theorem provides a new significance for the correction matrixK; its rows are
the co-ordinates of the curvature matrices, when expressed as a linear combination of the
relevant basis of the Lie-algebra.

Theorem 8. The curvature matricesQi can be constructed in the matrix representation of g
with basis {ai}, using only the normalization equations and the infinitesimal action. Indeed,

Qi =
∑
j

Kijaj

where K is the correction matrix given in Section2.3.

Proof. Chooseg ∈ G arbitrary withz̃ = g ∗ z. On the one hand we have

D̃iR(ρ(̃z))|g=ρ(z) = D̃i(R(ρ(z))R(g−1))|g=ρ(z) = D̃i(R(ρ(z)))R(g)−1|g=ρ(z) = Qi

and on the other hand

D̃iR(ρ(z̃))|g=ρ(z) =
r∑
j=1

D̃iρj(z̃)
dR(ρ(z̃))

dρj(z̃)

∣∣∣∣
g=ρ(z)

=
r∑
j=1

Kijaj

sinceρ(ρ(z) ∗ z) = e. �
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The following proposition generalizes the zero-curvature Eq.(28) to include the case of
non-commuting invariant differential operators and is essentially the structural formula for
the Maurer-Cartan form.

Proposition 9. The curvature matrices (29) satisfy the syzygy

Dj(Qi) −Di(Qj) = ([Dj,Di]�)�−1 + [Qj,Qi]. (30)

Proof.

Dj(Qi) −Di(Qj) = Dj(Di(�)�−1) −Di(Dj(�)�−1)

= DjDi(�)�−1 −DiDj(�)�−1 +Di(�)Dj(�
−1) −Dj(�)Di(�

−1)

= [Dj,Di](�)�−1 + [Qj,Qi]

as��−1 = 1 impliesDk(�−1) = −�−1Dk(�)�−1. �

The commutators of the invariant derivative operators can be calculated using only
the K matrix and the infinitesimals of the group action. The following formula is taken
from ([5], Equation 13.12). Denote the invariantized derivatives of the infinitesimals
ξ by

Ξkli = D̃iξk,l(z̃)|g=ρ(z).

Then we have

[Di,Dj] = AkijDk, Akij =
r∑
l=1

KjlΞ
k
li − KilΞ

k
lj. (31)

Remark 10. We will denote the curvature invariants that appear in the matrixQx by the
vectorκ. If the normalisation equations do not involve time-derivatives then it is always
possible to rewrite the syzygy(30) in the form

κt = HIt, (32)

whereH is a invariant matrix differential operator involving curvature invariants only. This
is done by replacingItKj byDxj ItK −MtKj repeatedly.

Example 1 (cont.). The matrix

R(g) =

 cosα − sin α a

sin α cosα b

0 0 1

 (33)
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provides a representation ofE(2). The infinitesimal generators of the Lie-algebra are

a1 =

0 −1 0

1 0 0

0 0 0

 , a2 =

0 0 1

0 0 0

0 0 0

 , a3 =

0 0 0

0 0 1

0 0 0

 .
TheK matrix (23) is used to calculate the curvature matrices

Qx =

 0 Ivxx/I
u
x −Iux

−Ivxx/Iux 0 0

0 0 0

 , Qt =

 0 Ivxt/I
u
x −Iut

−Ivxt/Iux 0 −Ivt
0 0 0

 (34)

and their commutator

QtQx −QxQt =

0 0 IvxxI
v
t /I

u
x

0 0 Ivxt − IvxxI
u
t /I

u
x

0 0 0

 .
Therefore from the matrix Eq.(30)we get the three equations

Dt
(
Ivxx
Iux

)
−Dx

(
Ivxt
Iux

)
= 0,

Dt(Iux ) −Dx(Iut ) = − IvxxI
v
t

Iux
,

Dx(Ivt ) = Ivxt − IvxxI
u
t

Iux
,

which are equivalent to the syzygies(24) obtained previously. Withκ = Ivxx/I
u
x , ν = Iux

these can be written as(
κ

ν

)
t

=
(
Dx

κ
ν
Dx

1
ν
Dx

Dx −κ

)(
Iut

Ivt

)
, (35)

which should be compared with the system(25).

Recall that the rows of the rotational part ofρ are the vectorse1 ande2 along the curve, see
Eq.(15). Suppose now thatν = 1; sinceIux = e1 ·Dxγ this corresponds to parameterizing
the curve by arc-length. Expressing the evolution ofκ in terms ofIvt yields

Dtκ = (D2
x + κxD

−1
x κ + κ2)Ivt (36)

The same equation is obtained from Eq.(25)sinceIux = 1 implies thatIuxx = Iuxt = 0. One
may recognize the recursion operator for the modified Korteweg–De Vries Eq.(47). Thus
an integrable evolution equation is obtained when one imposes the constraintIvt = κx.
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Example 2 (cont.). The infinitesimal generators in the Lie-algebrag are given by

a1 =
(

1 0

0 −1

)
, a2 =

(
0 1

0 0

)
, a3 =

(
0 0

1 0

)
.

Using theK matrix we get

Qx =
(

0 −1

−Ixx 0

)
, Qt =

(
It 0

−Ixt −It

)
.

By using Eq.(31), or the frame, we have [Dx,Dt ] = 2ItDx. Eq.(30)becomes

DtQx −DxQt = −2ItQx + [Qt ,Qx]

and provides the syzygies(27).

4. Lifting integrability

In this section we answer the question whether integrability of a curvature evolution
does lift to the motion of its curve. We take the existence of infinitely many generalized
symmetries to be the signature of integrability. Therefore we aim to show, in general, that
a symmetry of the curvature evolution gives rise to a symmetry of the curve evolution.

Suppose we have given two evolutions of curves,

utj = Pj[u], j = 1,2.

Here [u] denotes dependence onu as well as onxi-derivatives ofu. We have the following
identity

(Dt1Dt2 −Dt2Dt1 − [Dt1,Dt2])u = 0. (37)

We first look at(37) in the usual coordinates and then compare the calculations in the
invariantised setting. The vanishing of the commutator [Dt1,Dt2] = 0 yields

Dt1ut2 −Dt2ut1 = 0, (38)

which is the lowest order syzygy between time-derivatives of evolution variables. This
identity in the differential algebra gives us a condition on the functionsPj. In practise one
has to verify that

(Dt1P2)|ut1=P1 − (Dt2P1)|ut2=P2 = 0. (39)

If it vanishes indeed, we say that the curve evolutions commute. This condition is called the
symmetry condition. To evaluate the expressions one uses the trivial syzygiesDKu = uK
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(there are no correction terms) and the vanishing of the commutators

[Dtj ,Dxi ] = 0.

Next we will consider curve evolutions that are invariant under a given group action.
The lowest order syzygy involving invariant time derivatives of the fundamental evolution
invariants is

C(It1, It2) = Dt1It2 −Dt2It1 +Mt2t1 −Mt1t2 = 0. (40)

Note that the correction terms may depend on the evolution invariants and space derivatives
thereof, but not on their time-derivatives. Suppose that two invariant evolutions of a curve
are given by

Iti = Fi[κ], i = 1,2, (41)

where theFi depend on the curvature invariants and their invariant derivatives. LetH be
the matrix differential operator, see Remark10, such that the time evolutions ofκ, denoted
κti = Dtiκ, are given by

κti = HFi, i = 1,2. (42)

The invariant symmetry condition is now given by

(Dt1F2)|κt1=HF1 − (Dt2F1)|κt2=HF2 + (Mt2t1 −Mt1t2)|Iti=Fi = 0, (43)

or, for short, by

C(It1, It2)|Iti=Fi = 0.

This is the same condition as condition(39), but now written in terms of invariants.

Theorem 11. The symmetry condition for two curvature evolutions (42) is a differential
consequence of the symmetry condition on the curve evolutions (41). We have that

Dt1HIt2 −Dt2HIt1 − [Dt1,Dt2]κ = HC(It1, It2).

Proof. We look at both sides as differential expressions in the operatorsDx,Dt1 andDt2
acting on function ofκ, It1 and It2. Note that for exampleIt1t2 does not appear in such
an expression and everyκti has been replaced byHIti . We know that both sides vanish
identically in the differential algebra of invariants. Since we can expand both identities into
the form

HDt1It2 + . . . = 0.

where the dotted terms do not depend onDt1It2, both sides are equal as differential conditions
on the invariant functionsIti = Fi. �



1314 E.L. Mansfield, P.H. van der Kamp / Journal of Geometry and Physics 56 (2006) 1294–1325

When the action of the Lie-group neither depends nor acts on the variablest1 andt2 and
no evolution variables appear in the normalisation equations we can make the connection
between the symmetry condition(38) and its invariantised form(40) more explicit. In this
case the evolution invariantsIti will depend linearly on the original evolution variablesuti .

Let the Lie-group action be given by

x̃i = Fi(z, g), i = 1, . . . , p− 2,

t̃j = tj, j = 1,2,

ũα = Fα(z, g), α = 1, . . . , q.

Suppose that the variables appearing in the normalisation equations areζi = u
αi
Ki

wheret1
andt2 do not appear inKi for anyi. Then thep× p Jacobian matrixDx̃ is

Dx̃ =

M 0 0

v1 1 0

v2 0 1

 .
Here M is the (p− 2) × (p− 2) matrixM = A+ BC with Aij = ∂xiFj, Biα = uαi and
Cαj = ∂uαFj, and thevk, k = 1,2 are given by (vk)j =∑α u

α
tk
Cαj. The inverse of this

Jacobian matrix is given by

D̃x =

 M−1 0 0

−v1M
−1 1 0

−v2M
−1 0 1

 .
Hence the transformed time-derivative operators are

D̃tk = Dtk − vkM
−1Dx. (44)

Applying such an operator to the transformed variables ˜u and then evaluating on the frame
g = ρ(z) gives us the matrix relating the evolution invariants and the evolution variables.

Proposition 12. We have in this case

Iti = R−1uti , i = 1,2,

where R is a matrix of functions of uαK with ti not in the index K.

From Eq.(44)we also know that the invariant operatorsDtj equalDtj up to some correction
term which is a linear operator in theDx with coefficients that are linear in theItj . Therefore
the identities(38) and (40)are related by

R−1(Dt1ut2 −Dt1ut2) = Dt1It2 −Dt2It1 +Mt2t1 −Mt1t2

by linearity of the derivations.
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Theorem11 implies that integrability does not necessarily lift from the curvature evolu-
tion to the curve evolution. However, most commonly studied integrable curvature equations
are homogeneous polynomials or rational functions of the differential invariants. Since in
these classes the kernel of the differential operatorH is empty, pairs of integrable equations
result, cf.[13]. In order to illustrate the scope of the theorem and the power of the method,
we include, for several geometries, the explicit calculations that one would need to perform
in the absence of the general result.

It can be seen in the examples that verifying the equation in Theorem11can involve
substantial calculations. In particular, the fact that the operatorH factors out of the left hand
side is remarkable.

Another useful observation is that the explicit formulas for the curvature invariants pro-
vide a Miura-type transformation between the curve evolution and the curvature evolution.
This will also be illustrated in the following examples.

Example 3. One example is provided by the groupSL(2) acting as ˜x = x, t̃ = t and

ũ = au+ b

cu+ d
, ad − bc = 1.

The transformation relating the Schwarzian KDV Eq.(46) to the KDV Eq. (45) arises
naturally in this context.

When we take ˜u = ũx − 1 = ũxx = 0 as the normalization equations and takea, b, c as
co-ordinates of the group, we have

K =
(

0 −1 1
2Ixxx

−1
2Ixt −It 1

2Ixxt

)
.

and, using the same basis forsl(2) as inExample 2, we get

Qx =
(

0 −1
1
2Ixxx 0

)
, Qt =

(
−1

2Ixt −It
1
2Ixxt

1
2Ixt

)
,

and

[Qt ,Qx] =
(

1
2(Ixxt − ItIxxx) Ixt

1
2IxtIxxx

1
2(ItIxxx − Ixxt)

)
.

Eq.(30)gives the following syzygies

DxIxt = Ixxt − ItIxxx,

DxIt = Ixt,

DtIxxx −DxIxxt = IxxxIxt.
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We eliminateIxt andIxtt and denoteIxxx = κ to getκt = HIt , where

H = D3
x + κDx +Dxκ

is one Hamiltonian operator of the KDV equation

κt = κxxx + 3κκx, (45)

which is famously integrable. When we impose the constraintIt = κ this implies thatκ
evolves according to KDV. Let us find out what the motion of the curve is. Using the
moving frame,

ρ =
(

1√
ux
,

−u√
ux
,

uxx

2ux
√
ux

)
,

we obtain explicit expressions for the invariants,

It = ut

ux
, κ = uxxx

ux
− 3

2

u2
xx

u2
x

.

Writing the constraintIt = κ in terms of the original co-ordinates we get the Schwarzian
KDV equation,

ut = uxxx − 3

2

u2
xx

ux
, (46)

which is also well known to be integrable. Thusκ = {x; u}, the Schwarzian derivative,
provides the Miura transformation between SKDV and KDV.

We compare the symmetry conditions on the different levels. Two different motions of
the curve are given by different choices for the evolution invariantIt as a function of the
curvature invariant. The curve moves in different time-directionst1, t2 by uti = uxFi, i =
1,2. The condition on the functionsF1 andF2 for these evolutions to commute is

0 = ut1t2 − ut2t1

= Dt2(uxF1) −Dt1(uxF2)

= Dx(uxF2)F1 + uxDt2F1 −Dx(uxF1)F2 − uxDt1F2

= ux(Dt2F1 −Dt1F2 − F1DxF2 + F2DxF1).

The symmetry condition for the curvature evolutions,κti = HFi, to commute becomes

0 = κt1t2 − κt2t1

= Dt2HF1 −Dt1HF2

= HDt2F1 +H(F2)DxF1 +DxH(F2)F1−HDt1F2 −H(F1)DxF2 −DxH(F1)F2

= H(Dt1F2 −Dt2F1 − F1DxF2 + F2DxF1),
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where the last step can be verified by direct, albeit lengthy, computation, verifying Theorem
11.

The KDV equation has a recursion operatorR = HD−1
x . We can use this operator to

write down the symmetries of SKDV. The constraintIt = D−1
x R

n−1κx makesκ evolve
according to a symmetry of KDV:κt′ = Rnκx. Therefore we have

ut′ = uxD
−1
x R

n−1κx,

whereκ = {x; u} is a symmetry of SKDV. Generating the symmetries this way is easier
than by using the recursion operator for SKDV given in[26].

Example 2 (cont.). Although we do not know whether there is an integrable equation that
arises as the curvature evolution of a curve moving in the geometric setting of the matrix
action ofSL(2) on (x, u), still Theorem11implies that if it is in a class of equations where
the kernel ofH = D2

x − 4κ is empty, then the motion of its curve is integrable as well. The
invariant evolution operators are, cf. Eq.(26),

Dti = Dti +
xuti

u− xux
Dx,

which commute with each other but not withDx. We impose constraintsIti = Fi, i = 1,2
to describe the curve moving in different timeti directions. The motions of the curves
uti = (u− xux)Fi commute when

0 = ut1t2 − ut2t1

= Dt2(u− xux)F1 −Dt1(u− xux)F2

= (u− xux)((Dt2 + xF2Dx)F1 − (Dt1 + xF1Dx)F2)

= (u− xux)(Dt2F1 −Dt1F2).

Using the relation [Dx,Dti ] = 2FiDx it can be verified that

Dt2(D2
x − 4κ)It1 −Dt1(D2

x − 4κ)It2 = (D2
x − 4κ)(Dt2F1 −Dt1F2),

supporting Theorem11.

Example 2 (cont.). It is also possible to have non commuting operatorsDti . Takedifferent
normalisation equations;

x̃ = ũ = ũx + 1 = 1.

Then

R = u− xux, H = D2
x −Dx(κ) − 4κ,
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with κ = Ixx. The commutators are

[Dt1,Dt2] = (It1Dx(It2) − It2Dx(It1))Dx, [Dx,Dti ] = (2Iti −Dx(Iti ))Dx.

According to Theorem11we have

Dt1HF2 −Dt2HF1 − (F1Dx(F2) − F2Dx(F1))Dx(κ)

= H(Dt1F2 −Dt2F1 + F1Dx(F2) − F2Dx(F1))

for arbitrary functionsFi. This can be verified by using the expressions for the operators in
the original variables, or, by using the above commutation relations. There are algorithms
available for processing differential systems given in terms of non-commutative derivations
[8,14]. In general, when a frame cannot be constructed explicitly, this is the only option.

Example 1 (cont.). For the Euclidean action on the plane, after parameterizing by arc-length,
we have obtained the syzygyκt = RIvt , with

R = Dx(Dx + κD−1
x κ),

cf. Eq.(36). The operatorDx is a Hamiltonian operator andJ = Dx + κD−1
x κ is a symplectic

operator for the MKDV equation

κt = κxxx + 3

2
κ2κx, (47)

cf. [26].

However, to avoid the use ofD−1
x , we prefer to write the syzygy asκt = HIut , where

H = Dx(κ +Dx
1

κ
Dx) (48)

We consider two different curve evolutions given byIut = Fi, i = 1,2. The motion can be
written in terms of frame vectors as

γti = Fie1 + 1

κ
Dx(Fi)e2.

We know fromQt , see Eq.(34) that

Dti

(
e1

e2

)
= (κ +Dx

1

κ
Dx)(Fi)

(
e2

−e1

)
.

Therefore the curves commute when

0 = Dt2γt1 −Dt1γt2 = Ce1 + 1

κ
Dx(C)e2,
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where

C = Dt2F1 −Dt1F2 − F2DxF1 + F1DxF2 − Dx(F1)D2
xF2 −Dx(F2)D2

xF1

κ2 .

Using formula(48) for H and the evolutions ofκ, it can be verified that indeed we have

Dt2κt1 −Dt1κt2 = H(C),

in agreement with Theorem11.
Under the constraintIut = 1

2κ
2, or Ivt = Dxκ, the curvatureκ evolves according to the

MKDV Eq. (47). If one imposes, in succession, the constraints

Ivtm = Rm−1κx, m = 1,2, . . . .

then their corresponding curvature evolutions are the symmetries of MKDV, namelyκtm =
Rmκx. The curve evolutions defined by the constraints form a hierarchy as well. The lowest
order (m = 1) constraint yields the following evolution for the curve

γt = 1

2
κ2e1 + κxe2, (49)

which is called the planar filament equation. Using the recursion operator of MKDV to
generate its higher symmetries is easier than the procedure given in[13].

Since the frame is known explicitly, it is easy to write equation(49) in terms of the
original jet co-ordinates. By elimination of the second co-ordinatev using the constraint
u2

1 + v2
1 = 1 we get foru the equation

ut = uxxx + 3

2

uxu
2
xx

1 − u2
x

(50)

These kind of scalar equations, i.e., third order equations linear in the highest derivative
term, are classified with respect to integrability. Indeed, the above equation appears in the
list ([19], equation 4.1.14). The explicit expression for the curvature, that is

κ = (uxDx − uxx)
√

1 − u2
x,

provides the Miura transformation that transforms Eq.(50) into MKDV. Yet other descrip-
tions of the same geometric flow can be given, see Eqs.(53) and (54)in [2].

Example 4. We consider the motion of curves in 3 dimensional Euclidean space. The
Cayley representation ofSO(3) is given by the matrix

R(g) =

g
2
0 + g2

1 − g2
2 − g2

3 2(g1g2 − g0g3) 2(g1g3 + g0g2)

2(g1g2 + g0g3) g2
0 − g2

1 + g2
2 − g2

3 2(g2g3 − g0g1)

2(g1g3 − g0g2) 2(g2g3 + g0g1) g2
0 − g2

1 − g2
2 + g2

3

 ,
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whereg2
0 + g2

1 + g2
2 + g2

3 = 1. Let us write the vector of translation asV (g) = (g4, g5, g6)
and define the action of the Euclidean groupE(3) = SO(3)�R3 onγ = (u, v,w) by

g ∗ γ = R(g)(γ − V (g)).

A representation of the groupE(3) is given by

(
R(g) V (g)

0 1

)
.

The normalization equationsIu = Iv = Iw = Ivx = Iwx = Iwxx = 0 yield

Qx =


0 κ 0 −Iux

−κ 0 τ 0

0 −τ 0 0

0 0 0 0

 , Qt =


0 a c −Iut

−a 0 b −Ivt
−c −b 0 −Iwt
0 0 0 0


where

κ = Ivxx

Iux
, τ = Iwxxx

Ivxx
, a = Ivxt

Iut
, c = Iwxt

Iut
, b = IwxxtI

u
x − IwxtI

u
xx

Iux I
v
xx

. (51)

Eq.(30)yields, after elimination ofc,

(
κ

τ

)
t

=
(
Dx + τD−1

x τ −τD−1
x κ

−κD−1
x τ Dx + κD−1

x κ

)(
a

b

)
.

SettingIux to 1 and writinga, b, andc in terms of the generating evolution invariants yields ab
c

 =

 κ +Dx
1
κ
Dx −τ

τ + 1
κ
(τDx +Dxτ) 1

κ
Dx

1
κ
(D2

x − τ2)
τ
κ
Dx Dx

( Iut
Iwt

)
, (52)

where we have eliminatedIvt = 1
κ
DxI

u
t .

The rotation part of our frameρ, which has not been calculated explicitly, is related
to the standard Serret–Frenet frame (e1, e2, e3)T, that is, thei− th row ofR(ρ) equalsei.
Therefore we have

Iux = e1 · γx, Ivx = e2 · γx, Iwx = e3 · γx.
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From the normalization equations we obtainγx = Iux e1. Hence havingIux = 1 corresponds
to x being arc-length. In terms of the Serret–Frenet frame the curve evolution is

γt = Iut e1 + 1

κ
Dx(I

u
t )e2 + Iwt e3.

In this equationIut andIwt must be given in terms ofκ andτ and their derivatives for the
curve evolution to be invariant under the group action.

One integrable equation of this form isγt = κe3, called the filament equation, see[12].
This equation is equivalent to the constraintsIut = 0, Iwt = κ. If γ evolves according to the
filament equation, thenκ andτ evolve according to

κt = −1
κ
Dxτκ

2

τt = Dx(
κx
κ

+ 1
2κ

2 − τ2).
(53)

An explicit form for the filament equation in terms of the original variables can be
obtained from the explicit expressions for the frame dependent invariantsκ, Iut and Iwt .
Without knowledge of the frame these can be obtained using the Fels–Olver–Thomas re-
placement rule from the known classical invariants. In this case the normalization equations
yield

|γx| = Iux ,

|γx × γxx| = Iux I
v
xx,

γx · (γxx × γxxx) = Iux I
v
xxI

w
xxx,

|γt|2 = Iut
2 + Ivt

2 + Iwt
2,

|γx × γt|2 = Iux
2(Ivt

2 + Iwt
2),

γx · (γxx × γt) = Iux I
v
xxI

w
t .

More directly one can use the well known explicit expression for the Serret–Frenet frame,

e1 = γx, e2 = γxx

|γxx| , e3 = γx × γxx

κ
.

When the third co-ordinatew is eliminated using|γx| = 1 the filament equationγt = γx ×
γxx, written in co-ordinates, is

ut = −vxx(1 − u2
x) + uxxuxvx√

1 − u2
x − v2

x

,

vt = uxx(1 − v2
x) + vxxvxux√

1 − u2
x − v2

x

.

(54)
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The Miura transformation from Eq.(54)to Eq.(53) is provided by the explicit formulas for
the curvature invariants

κ =
√
u2
xx + v2

xx − (uxxvx − vxxux)2√
1 − u2

x − v2
x

,

τ = uxxvx − vxxux√
1 − u2

x − v2
x

− (uxxxvxx − vxxxuxx)
√

1 − u2
x − v2

x

u2
xx + v2

xx − (uxxvx − vxxux)2
.

The operatorH is now a 2× 2 matrix. We have(
κti

τti

)
= H

(
Iuti

Iwti

)
,

with

H =
(

Dxκ + (D2
x − τ2) 1

κ
Dx −(Dxτ + τDx)

τDx +Dxτ +Dx
1
κ
(τDx +Dxτ) 1

κ
Dx Dx

1
κ
(D2

x − τ2)

)
.

This operator is related to the Hamiltonian operatorP given in ([18], Theorem2), in the
case of zero curvature, by interchanging the columns. We impose constraints(

Iuti

Iwti

)
=
(
Fi

Gi

)
, i = 1,2.

The corresponding curveti-evolutions commute when

0 = Dt2γ1 −Dt1γ2 = C1e1 + 1

κ
Dx(C1)e2 + C2e3,

where we have usedQt and Eq.(52) to find

C1 = F2DxF1 − F1DxF2 +G1DxG2 −G2DxG1 + 2τ
κ
(G1DxF2 −G2DxF1)

+ 1
κ2 (Dx(F1)D2

xF2 −Dx(F2)D2
xF1),

C2 = F2DxG1 − F1DxG2 + 2 τ
κ3 (Dx(F2)D2

xF1 −Dx(F1)D2
xF2)

+ τ2

κ2 (G2DxF1 −G1DxF2) + 1
κ2 (Dx(F2)D2

xG1 −Dx(F1)D2
xG2).

Theorem11tells us that

Dt2H

(
F1

G1

)
−Dt1H

(
F2

G2

)
= H

(
C1

C2

)
.
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To verify this requires quite a lengthy calculation. In particular, the integrability lifts from
Eq. (53) to Eq. (54). A recursion operator for Eq.(53) was given in[18]. Similar to the
planar case, this recursion operator can be used to write down the higher symmetries of the
curve evolution(54)easily.

Example 5. Given an evolution equation, integrable or not, it is sensible to ask whether
it arises as the curvature evolution for a curve moving in some geometry. However, this
may happen in more than one way. We illustrate this by proving that any scalar evolution
equation that allows a potential form arises both as the curvature evolution of a projected
curve on the line and as the curvature evolution of a scaled curve on the line. By Theorem
11, these curves are integrable if the curvature evolution is integrable.

Suppose that a scalar equation forκ can be written as

κt = DxF [κ], (55)

for someF which is a function ofκ and itsx-derivatives. Then the equation has apotential
form. The potential form of Eq.(55), obtained from the transformationκ = νx, is given
explicitly by

νt = F [νx].

For example, the potential form of Burgers’ equationκt = Dx(κx + κ2) is

νt = νxx + ν2
x.

We first consider a curveu(x) moving on the line where the geometry is given by
x̃ = x, ũ = gu. As a representation of the group (R+, ·), we haveR(g) = g. We impose
the normalization equation ˜u = 1, which yields the right-moving frameρ = 1/u. Among
the invariants of the action we haveIx = ux/u andIt = ut/u. The curvature matrices are
scalars, i.e.,Qx = −Ix, Qt = −It . Since these commute, Eq.(30) yieldsDtIx = DxIt ,
which is of the form(55). We write Ix = κ and It = F [κ]. Thus, Eq.(55) arises as the
curvature evolution for the a scaled curve, whose evolution is given by

ut = uF
[ux
u

]
. (56)

Next we consider curvesu(x) moving on the line where the geometry is given by
x̃ = x, ũ = u/(1 − gu). As a representation of the group (R,+) we haveR(g) = eg. We im-
pose the normalization equation ˜u = 1. This yields the right-moving frameρ = (1 − u)/u.
Among the invariants of the action we haveIx = ux/u

2 andIt = ut/u
2. The curvature ma-

trices areQx = −Ix andQt = −It , and we arrive to Eq.(55)again, however with different
curvatures invariantsIx = κ andIt = F [κ]. Therefore, Eq.(55)also describes the curvature
flow of a projective curve moving on the line where the evolution of the curve is given by

ut = u2F
[ux
u2

]
. (57)
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Note that Eq.(57) is equivalent to the potential form of the equation by the invertible
transformationν = −1/u.

In the following table we present the curve evolutions whose curvatures evolve accord-
ing to Burgers’ equation (or the heat equation ifa = 0), the Korteweg–De Vries equation
and the nonlinear diffusion equation. Other equations which have a potential form include
the modified KDV equation, the Sawada-Kotera equation and the Kaup-Kupershmidt equa-
tion. Their scaled and projective curve evolutions can be obtained directly from(56) and
(57).

Curvature flow scaled curve projective curve

κt = κxx + aκxκ ut = uxx + (a− 1)
u2
x

u
ut = uxx − 2u

2
x
u

+ a
2
u2
x

u2

κt = κxxx + aκxκ ut = uxxx − 3
uxxux

u
+ 2

u3
x

u2
+ a

2

u2
x

u
ut = uxxx − 6uxxux

u
+ 6u

3
x

u2 + a
2
u2
x

u2

κt = Dx
κx
κ2 ut = uxx

u2

u2
x

− u ut = uxx
u4

u2
x

− 2u3
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